Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357931

RESUMO

Nicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , NAD , Feminino , Gravidez , Humanos , Camundongos , Animais , NAD/metabolismo , Niacinamida , Fenótipo , Metaboloma , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo
2.
Antioxid Redox Signal ; 39(16-18): 1108-1132, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37300479

RESUMO

Significance: Nicotinamide adenine dinucleotide (NAD) is an important molecule synthesized from tryptophan or vitamin B3 and involved in numerous cellular reactions. NAD deficiency during pregnancy causes congenital NAD deficiency disorder (CNDD) characterized by multiple congenital malformations and/or miscarriage. Studies in genetically engineered mice replicating mutations found in human patient cases show that CNDD can be prevented by dietary supplements. Recent Advances: A growing number of patient reports show that biallelic loss-of-function of genes involved in NAD de novo synthesis (KYNU, HAAO, NADSYN1) cause CNDD. Other factors that limit the availability of NAD precursors, for example, limited dietary precursor supply or absorption, can cause or contribute to NAD deficiency and result in CNDD in mice. Molecular flux experiments allow quantitative understanding of NAD precursor concentrations in the circulation and their usage by different cells. Studies of NAD-consuming enzymes and contributors to NAD homeostasis help better understand how perturbed NAD levels are implicated in various diseases and adverse pregnancy outcomes. Critical Issues: NAD deficiency is one of the many known causes of adverse pregnancy outcomes, but its prevalence in the human population and among pregnant women is unknown. Since NAD is involved in hundreds of diverse cellular reactions, determining how NAD deficiency disrupts embryogenesis is an important challenge. Future Directions: Furthering our understanding of the molecular fluxes between the maternal and embryonic circulation during pregnancy, the NAD-dependent pathways active in the developing embryo, and the molecular mechanisms by which NAD deficiency causes adverse pregnancy outcomes will provide direction for future prevention strategies. Antioxid. Redox Signal. 39, 1108-1132.


Assuntos
Suplementos Nutricionais , NAD , Humanos , Feminino , Gravidez , Animais , Camundongos , NAD/metabolismo , Oxirredução , Mutação , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA